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ABSTRACT

We discuss the idea of whether spherical blast waves can amplify by a nonlocal resonant hydrodynamic mechanism
inhomogeneities formed by turbulence or phase segregation in the interstellar medium. We consider the problem of
a blast-wave–turbulence interaction in the Linear Interaction Approximation. Mathematically, this is an eigenvalue
problem for finding the structure and amplitude of eigenfunctions describing the response of the shock-wave flow
to forced oscillations by external perturbations in the ambient interstellar medium. Linear analysis shows that the
blast wave can amplify density and vorticity perturbations for a wide range of length scales with amplification
coefficients of up to 20, with increasing amplification the larger the length. There also exist resonant harmonics for
which the gain becomes formally infinite in the linear approximation. Their orbital wavenumbers are within the
range of macro- (l ∼ 1), meso- (l ∼ 20), and microscopic (l > 200) scales. Since the resonance width is narrow
(typically, Δl < 1), resonance should select and amplify discrete isolated harmonics. We speculate on a possible
explanation of an observed regular filamentary structure of regularly shaped round supernova remnants such as
SNR 1572, 1006, or 0509-67.5. Resonant mesoscales found (l ≈ 18) are surprisingly close to the observed scales
(l ≈ 15) of ripples in the shell’s surface of SNR 0509-67.5.
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1. INTRODUCTION

The shapes of supernova remnants (SNRs) are generally
far from perfect spherical geometry. Various physical factors
cause asphericity, including anisotropy of supernova ejecta,
hydrodynamic instabilities, and inhomogeneities in an ambient
interstellar medium. Even the most rotund remnants such as
SNR 1572 and 1006 (Raymond et al. 2007; Winkler et al. 2013)
or SNR 0509-67.5 (Warren & Hughes 2004) are endowed with
small-scale structures such as ripples, filaments, or knots.

The latter two have corrugations with a radius of curvature
less than or equal to 1/10 of the SNR size (Raymond et al.
2007). Raymond (2003) and Raymond et al. (2007) argue for
the turbulent origin of the rippling in SNR 1006, as well as in
the other filamentary SNR Cygnus Loop, while Patnaude et al.
(2002) argue for multiphaseness.

Even accepting the hypothesis of turbulent or multiphase
origin, we have to admit at the same time an amazing regularity
of pattern-imprinting fine rippling that can be seen on the
recently published composite optical–X-ray image of SNR
0509-67.5 from Hubble Space Telescope and Chandra released
by NASA (2012). One can recognize ∼15 knots observed in
longitude: this regular speckled structure envelops the whole
remnant’s surface. This regular pattern suggests that some length
scales of perturbations are more preferred than others, and this
is hard to understand in a turbulence scenario that is scaleless
by nature.

Quite the reverse, it would appear reasonable that there exists
a physical mechanism amplifying few intermediate scales. A
plausible explanation would be that we observe the development
of some instability on the shock surface of the remnant. If the
idea of instability is correct, the fact that the excited scales are not
vanishingly small but comparable to the remnant’s size argues
for the nonlocal nature of instability. This means that different
fragments of the filamentary structure are physically coupled,
which provides for ordering and regularity of the filamentary
structure irrespective of initial and, probably, environmental

conditions. In the case in point the globality of instability can
be caused by the remnant’s size finiteness.

There are a multitude of different types of shock-wave
instabilities, among which the global instabilities constitute a
modest set. Regarding the SNR shock instabilities, the case
that should be mentioned above all else is the Ryu–Vishniac
instability (Ryu & Vishniac 1987, 1991). This instability is
based on the hydrodynamic mechanism of self-excitation of
oscillations within a spherical shock wave. However, its scope is
limited by gases in an almost isothermal state, the increments are
sufficiently small, and saturation occurs at a weakly nonlinear
level (the density enhancements have a factor of �2) (Mac Low
& Norman 1993).

The spherical shock in the Ryu–Vishniac representation can
be considered a coherent oscillator generating self-sustained
oscillations. The spherical shock again is a spherical resonant
cavity that can be excited by external disturbances. Indeed, the
environment for the interstellar shock is not in the least a perfect
uniform background but usually a strongly inhomogeneous,
turbulized or phase-separated medium.

In the present paper we analyze the efficiency of possible
resonant amplification of disturbances by the spherical shock
wave. The basic idea is that an SNR can filter out some resonant
length scales within chaotic and globally scaleless noise in the
ambient turbulent or phase-separated interstellar matter.

The possibility of turbulence amplification by the shock
waves has been a debatable issue for a long time. Such a possibil-
ity has been proved theoretically (Wouchuk et al. 2009; Donzis
2012), numerically (Lee et al. 1997; Balsara et al. 2001; Jamme
et al. 2002), and experimentally (Andreopoulos et al. 2000).

The analytical studies focus mainly on the local mechanisms
of turbulence amplification. However, when the finiteness of the
flow becomes significant, nonlocal resonant effects can appear.

In our study we rely on the Linear Interaction Approximation,
which is mainly used since the pioneering work by Ribner
(1954) to analyze the shock–turbulence interaction. Such an
approximation seems to be reasonable if the turbulence is
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significantly subsonic and a low-amplitude one, which of course
is the case under consideration.

To a certain extent, our analysis resembles the approach of
(Sari et al 2012); however, it possesses greater versatility.

The outline of the paper is as follows: In Section 2 we de-
scribe the physical model of the shock wave produced by the
point explosion, discuss its symmetrical (scaleless) properties,
define similarity variables for both the unperturbed flow and per-
turbations, and pose a mathematical problem for the postshock
perturbations with particular focus on derivation of the inner
boundary conditions. Mathematically, the computational task is
reduced to an eigenvalue problem for finding the amplitudes
of the postshock perturbations if the amplitudes and frequency
of outer perturbations are given. In Section 3 we present the
results of numerical integration. We show that both for the vor-
tex modes and for the entropy modes there exist conditions for
infinite (in the linear approximation) resonant amplification. In
Section 4 we discuss the domain of applicability of solutions
found and present a brief summary.

2. THE MODEL

2.1. Basic Equations and Unperturbed Flow

All SNRs mentioned in the Introduction are young or middle-
aged objects with sizes ∼10–20 pc for which approximation of
adiabatic expansion holds. Thus, we base our consideration on
an adiabatic shock-wave model.

The magnetic field becomes dynamically important if mag-
netic pressure becomes comparable with dynamic and/or ther-
modynamic pressure. Simple estimates show that magnetic pres-
sure becomes equal to the density of released supernova energy
1051 erg smeared out all over the spherical volume with a ra-
dius of 10 pc if the magnetic field attains the value ∼300 μG.
There are many magnetized remnants, such as SN 1006 with
∼170 μG (Marcowith & Casse 2010), for which B-field can-
not be neglected. On the other hand, Warren & Hughes (2004)
estimate the magnetic field value in SNR 0509-67.5 as 60 μG;
therefore, magnetic pressure is insignificant there at the adia-
batic stage at least. In the present paper we limit ourselves to an
examination of the pure hydrodynamical model, neglecting the
effects of magnetic pressure.

The shock-wave dynamics is described by the system of
gasdynamic equations for inviscid perfect gas with an adiabatic
index γ

∂ρ

∂t
+ div(ρv) = 0, (1)

∂(ρv)

∂t
+ div(ρvv) + ∇p = 0, (2)

∂

∂t

(
ρv2

2
+

p

(γ − 1)

)
+ div

(
ρvv2

2
+

γpv
(γ − 1)

)
= 0, (3)

which should be complemented by the outer boundary condi-
tions at the strong shock front, which in our case read as

−ρ0V = ρs(vs − V), (4)

ρ0V2 = ρs(vs − V)2 + ps, (5)

1

2
V2 = 1

2
(vs − V)2 +

γ

γ − 1

ps

ρs

. (6)

Here ρ is the density, v is the velocity, p is the pressure,
and V is a shock front velocity. Hereafter we denote by the
subscripts “0” and “1” the states outside and inside the shock-
wave flow, respectively, and “s ′′ denotes the states just behind the
shock front.

Further, we consider both preshock and postshock flows
as a superposition of the unperturbed (mean) flow and small
perturbations

ρ = ρ0,1 + δρ0,1, v = v0,1 + δv0,1, p = p0,1 + δp0,1. (7)

The parameters of the mean ambient medium are considered
as a motionless, zero-pressure state with spherically symmetric
power-law density distribution

ρ0 = A/rω, v0 = 0, p0 = 0, (8)

where r is the spherical radius and A and ω are certain constants.
We suppose that at the initial moment t = 0 an instant release

of energy E0 takes place in the origin that generates a flow with
a strong spherical shock wave.

The mean values inside the shock flow obey the self-similar
Sedov solution (Sedov 1959) in which the governing parameter,
the similarity index δ, is equal to

δ = 2

5 − ω
, (9)

which characterizes the rate of the unperturbed shock front
expansion,

Rs(t) ∼ t δ, V = dRs

dt
= δ

Rs

t
. (10)

Further, we use variables for the mean flow

ρ̃ = ρ1

ρs

≡ ρ̃(ξ ), ṽ = vr1

vrs

≡ ṽ(ξ ), p̃ = p1

ps

≡ p̃(ξ ), (11)

normalized by the postshock values

ρs = ρ0
γ + 1

γ − 1
, vrs

= 2V

γ + 1
, ps = 2ρ0V

2

γ + 1
, (12)

and the self-similar variable as the radial coordinate

ξ = r

Rs(t)
. (13)

In dimensionless variables (9)–(13) the system (1)–(3) for the
mean flow assumes the form(

2

γ + 1
ṽ − ξ

)
dρ̃

ρ̃dξ
+

2

γ + 1

dṽ

dξ
+

4

γ + 1

ṽ

ξ
− ω = 0, (14)

(
2

γ + 1
ṽ − ξ

)
dṽ

dξ
+

γ − 1

γ + 1

dp̃

ρ̃dξ
− 3 − ω

2
ṽ = 0, (15)

γ

(
2

γ + 1
ṽ − ξ

)
dρ̃

ρdξ
−

(
2

γ + 1
ṽ − ξ

)
dp̃

p̃dξ
+ (3 − γω) = 0.

(16)
One has two qualitatively different kinds of unperturbed flow:

the shell-like one with a hollow cavity inside (ω > 7 − γ /γ + 1)
and the solid flow that extends to the center of symmetry
(ω < 7 − γ /γ + 1) (Sedov 1959). In physical applications
the most important are the cases of either uniform background
ω = 0 or the power-law decreasing density with the slope ω > 0.
In what follows we assume 0 � ω < 3. The latter inequality
guarantees mass integrability in the origin.
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2.2. Perturbations

In describing perturbations we also use the nondimensional-
ized form:

fρ0,1 = δρ0,1

ρs

, fvξ0,1
= δvr0,1

vrs

, fvτ0,1
= δvτ0,1

vrs

,

fvb0,1
= δvb0,1

vrs

, fp0,1 = δp0,1

ps

. (17)

Here subscripts τ and b stand for tangential and binormal
components of velocity, respectively, to be explained further,
and the subscript “1” for the postshock perturbations is omitted.

The symmetry of the flow permits looking for a solution for
perturbations as an expansion in the vector spherical harmon-
ics. One can find different definitions of the vector spherical
harmonics in the literature (Barrera et al 1985; Winch et al.
2005); we follow that of (Kovalenko & Eremin 1998).

Heuristic arguments for this expansion are as follows.
The sphericity of the unperturbed flow prompts seeking the

expansion of scalar functions in a form of factored-out terms
∼ f (ξ )Ylm(θ, ϕ) known as solid spherical harmonics. Spherical
functions Ylm(θ, ϕ) compose a complete orthogonal basis in the
space of functions defined on a sphere S2.

The vector functions are expanded as follows. The geometry
of the problem defines three preferred directions. Two of them
are determined through the gradient of solid spherical harmonics
∇ (ξnYlm(θ, ϕ)): the first, radial one is given by the gradient of
the radial part, eξ = ∇ξ ; the second direction is determined
by the gradient of the spherical harmonic, ∇Ylm(θ, ϕ). By
definition the latter one is tangential to the concentric sphere
of radius ξ and thus orthogonal to eξ . The third direction is then
determined unambiguously as an orthogonal complement.

The right-hand triple of unit vectors

eξ = ∇(ξ ),

eτ = ∇Ylm(θ, ϕ)

|∇Ylm(θ, ϕ)| , l2 + m2 �= 0,

eb = eξ × ∇Ylm(θ, ϕ)

|eξ × ∇Ylm(θ, ϕ)| (18)

thus sets the natural orthogonal system of coordinates.
This new coordinate system allows us to split the nabla

operator in expansions similar to (20) into radial, ∇ξ , and
tangential, ∇τ , parts and to complement it by the binormal
counterpart ∇b:

∇ξ = eξ

∂

∂ξ
, ∇τ = ∇ − ∇ξ = eθ

ξ

∂

∂θ
+

eϕ

ξ sin(θ )

∂

∂ϕ
,

∇b = eξ × ∇ = eϕ

ξ

∂

∂θ
− eθ

ξ sin(θ )

∂

∂ϕ
. (19)

The natural system optimizes the analysis inasmuch as the
binormal component of perturbed velocity degenerates and thus
perturbations are reduced to two-dimensional ones.

Ultimately, the symmetry and similarity of the flow allow us
to look for a solution for perturbations as an expansion in the
solid spherical harmonics

fρ(ξ , t) =
∞∑
l=0

l∑
m=−l

fρlm
(ξ )Ylm(θ, ϕ)t−isl ,

fv(ξ , t) =
∞∑
l=0

l∑
m=−l

(
fvξlm

(ξ )Ylm(θ, ϕ)eξ

+fvτlm
(ξ )ξ∇τ Ylm(θ, ϕ)+fvblm

(ξ )ξ∇bYlm(θ, ϕ)
)
t−isl ,

fp(ξ , t) =
∞∑
l=0

l∑
m=−l

fplm
(ξ )Ylm(θ, ϕ)t−isl . (20)

Here ξ = (ξ, θ, ϕ) has the meaning of the radius vector in
a comoving spherical coordinate system, sl is a frequency in
the comoving logarithmic timescale t̃ = log(t/t0), and the
frequency does not depend on m since the differential equations
for perturbations do not depend on the m-wavenumber.

The radial dependencies of perturbations fi(ξ ) are found
by solving the system of linearized hydrodynamic equations
that can be obtained from the system (1)–(3) with the help
of (11)–(13), (17), (20). Orthogonality of harmonics allows
uncoupling and factorization of equations (Ryu & Vishniac
1991):

(
ṽ − γ + 1

2
ξ

)
dfρ

dξ
+ ρ̃

dfvξ

dξ

+

(
dṽ

dξ
+ 2

ṽ

ξ
− γ + 1

2
ω − 1

4
(γ + 1)(5 − ω)is

)
fρ

+

(
dρ̃

dξ
+ 2

ρ̃

ξ

)
fvξ

− l(l + 1)
ρ̃

ξ
fvτ

= 0, (21)

(
ṽ − γ + 1

2
ξ

)
ρ̃

dfvξ

dξ
+

γ − 1

2

dfp

dξ
− γ − 1

2ρ̃

dp̃

dξ
fρ

+

(
dṽ

dξ
− 1

4
(γ + 1)(3 − ω) − 1

4
(γ + 1)(5 − ω)is

)
ρ̃fvξ

= 0,

(22)

(
ṽ − γ + 1

2
ξ

)
ρ̃

dfvτ

dξ

+

(
dṽ

dξ
− 1

4
(γ + 1)(3 − ω) − 1

4
(γ + 1)(5 − ω)is

)
ρ̃fvτ

+
γ − 1

2ξ
fp = 0, (23)

(
ṽ − γ + 1

2
ξ

)
dfvb

dξ

+

(
dṽ

dξ
− 1

4
(γ + 1)(3 − ω) − 1

4
(γ + 1)(5 − ω)is

)
fvb

= 0,

(24)

−γ

(
ṽ − γ + 1

2
ξ

)
dfρ

dξ
+

(
ṽ − γ + 1

2
ξ

)
ρ̃

p̃

dfp

dξ

+

(
1

p̃

dp̃

dξ
− γ

ρ̃

dρ̃

dξ

)
ρ̃fvξ
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+ γ

((
ṽ − γ + 1

2
ξ

)
1

ρ̃

dρ̃

dξ
+

1

4
(γ + 1)(5 − ω)is

)
fρ

−
((

ṽ − γ + 1

2
ξ

)
1

p̃

dp̃

dξ
+

1

4
(γ + 1)(5 − ω)is

)
ρ̃

p̃
fp = 0.

(25)

Hereinafter the subscripts l and m are omitted. The typo in the
bracketed expression in the first term in Equation (25) from Ryu
& Vishniac (1991) is corrected as well.

It is worth noting once more that the system (21)–(25) is m-
wavenumber degenerated and that the variable fvb

uncouples
(Equation (24)).

2.3. External Perturbations

The system (21)–(25) describes perturbations both inside and
outside the shock wave. First consider the external to the shock
perturbations coded by the subscript “0.”

The radial function f (ξ ) in solid harmonics is usually chosen
as an expansion in eigenfunctions of some operator relevant to
the problem (Landau & Lifshitz 1991). For example, for the
Laplace equation

Δφ = 0

the radial parts are just power functions; the expression

φ =
∞∑

n,l=0

l∑
m=−l

φlmnξ
nYlm(θ, ϕ)

yields a general solution of the Laplace equation in a ball.
This power-law expansion of the radial function is nothing

but the Taylor series. Considering the perturbations as a regular
scalar or vector field bounded within the finite domain, we use
the power-law solid spherical harmonics

fi0 (ξ ) =
∞∑

n=0

fi0n
ξ n, i = (ρ, vξ , vτ , vb, p) (26)

as a basis for the external perturbation expansion.
For simplicity, we further limit ourselves to the principal

mode n = 0; the subscript n will, therefore, be omitted. It
follows therefrom that the absolute external perturbations δρ0,
δv0, and δp0 under consideration are spatially uniform.

Assuming the turbulent motion in the ambient medium to be
a slow and subsonic one, and assuming that the outside pressure
perturbations are negligible compared with the pressure behind
the strong shock wave, we can neglect the external acoustic
perturbations (fp0 → 0) and consider just two different modes,
either (1) the vortical mode (fv0 �= 0, fρ0 = fp0 = 0) or
(2) entropy perturbations (fρ0 �= 0, fv0 = fp0 = 0). In any
case, the acoustic perturbations (fp0 �= 0) cannot be considered
self-consistently as long as they violate the similarity condition.

As we know, the vortex and entropy modes are frozen in the
environment that we regard as motionless; thus, they have zero
frequency in the rigid reference frame. At the same time, relative
perturbations defined in the comoving frame and normalized
according to (17) should, of course, be time dependent.

Stationary preshock perturbations must obey the linearized
continuity equation

div(ρ0δv0) = 0. (27)

Taking into account expansion in spherical harmonics, with the
aid of Equation (8) we get from Equation (27) the relation
between the radial and tangential velocity components

δvξ0 = l(l + 1)

2 − ω
δvτ0 . (28)

This is a unique constraint for the outside perturbations: the
other linearized hydrodynamics equations for the momentum
and energy conservation are satisfied automatically.

The binormal component of velocity does not enter
Equation (27) and can be nullified so long as it does not couple
with other terms in neither boundary conditions on the shock
front nor hydrodynamic equations.

In total, one of three perturbations δvr0lm
, δvτ0lm

, and δρ0lm
can

be considered free, whereas the other two should be dependent
ones. For the entropy mode we assume

fρ0 �= 0, fvξ0
= fvτ0

= 0, (29)

and for the vortical mode we have

fρ0 = 0, fvξ0
= l(l + 1)

2 − ω
fvτ0

, fvτ0
�= 0. (30)

By virtue of stationarity of absolute perturbation, δρ0 ∝ t0,
and self-similarity, ρs ∝ t−δω (see Equations (8) and (10)), for
the relative perturbation we get

fρ0 = δρ0

ρs

= γ − 1

γ + 1

δρ0

ρ0
∝ t δω. (31)

With regard to proportionality fρ0 ∝ t−is according to (20), and
using the definition (9), we finally find the frequency for the
entropy mode

s(e) = 2ω

5 − ω
i. (32)

For the vortex mode with the aid of relations δv0 ∝ t0, vs ∝ t δ−1

we similarly get

s(v) = 3 − ω

5 − ω
i. (33)

The frequencies (32) and (33) can equally well be found upon
substituting (29) and (30) into (21)–(25).

2.4. Perturbations inside the Shock Wave

The radial dependencies fi(ξ ) of the solution for the pertur-
bations inside the shock wave are not presumed to be power
series expansions; rather, they are to be found by solving the
system (21)–(25) with the inner and outer boundary conditions.

2.5. Boundary Conditions for Perturbations

2.5.1. Outer Boundary Conditions

Linearized boundary conditions for the amplitudes of per-
turbations can be deduced from the general boundary condi-
tions (4)–(6) with regard to the fact of the shock surface warping:

fρs
= −

(
ω +

dρ̃

dξ

∣∣∣∣
s

)
η +

γ + 1

γ − 1
fρ0 , (34)

fps
=

(
2 − ω − (5 − ω)is − dp̃

dξ

∣∣∣∣
s

)
η

+
γ + 1

γ − 1
fρ0 − 4

γ + 1
fvξ0

, (35)

4
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fvξs
=

(
1 − (5 − ω)

2
is − dṽ

dξ

∣∣∣∣
s

)
η +

γ − 1

γ + 1
fvξ0

, (36)

fvτs
= −η + fvτ0

, (37)

fvbs
= fvb0

= 0. (38)

Corrugation of the shock front is described here by the small
dimensionless parameter

η(θ, ϕ, t) ≡ ΔRs

Rs

=
∑
l,m

ηlmYlm(θ, ϕ)t−isl � 1, (39)

where ΔRs(θ, ϕ, t) is a small shift of the front from its mean
value Rs(t).

2.5.2. Inner Boundary Condition at the Center of Symmetry

The relationship between characteristics requires only one
inner boundary condition.

It is notable that derivation of the correct inner boundary
condition has a long history. Ryu & Vishniac (1987) derived
the equation δp(0) = 0, which was criticized by Kushnir et al.
(2005). Indeed, the condition of null perturbed pressure seems to
go beyond the bounds of common sense. If we uniformly com-
press an element of fluid, pressure will definitely grow inside the
fluid. Kushnir et al. (2005) proposed another condition, which
they formulated in an asymptotic form, suggesting a lack of sim-
ilarity at the origin due to specific initial conditions (nonpoint
and probably noninstant energy release). This condition being
adapted for numerical calculation, no analytical expression was
presented.

In fact, the condition at the inner boundary, as well as the outer
boundary, is actually a no-source condition and can be explicitly
derived from Equations (1)–(3), expressing conservation laws.

Let us integrate the linearized divergent terms from
Equations (1)–(3) over the small sphere Sε of vanishingly small
radius ε and the volume Vε centered at the origin.

For the linearized mass flux we get

δImass =
∫

Vε

div [δ(ρv)] dV =
∮

Sε

(δρv0 + ρ0δv)dS

= (δρ(ε)v0(ε) + ρ0(ε)δvξ (ε))ε2
∮

4π

YlmdΩ, (40)

where Ω stands here for the solid angle.
In a similar manner for the fluxes of momentum and energy

we have

δImom =
∫

Vε

div
[
δ
(
ρvv + pÎ

)]
dV

= (
δρ(ε)v2

0(ε) + 2ρ0(ε)v0(ε)δvξ (ε) + δp(ε)
)
ε2

∫
4π

Ylmeξ dΩ

+ ρ0(ε)v0(ε)δvτ (ε)ε3
∫

4π

∇τ YlmdΩ, (41)

δIener =
∫

Vε

div

[
δ

(
ρv

v2

2
+

γpv
γ − 1

)]
dV

= 1

2

[
δρ(ε)v3

0(ε) + 3ρ0(ε)v2
0(ε)δvξ (ε)

]
ε2

∫
4π

YlmdΩ

+
γ

γ − 1

[
δp(ε)v0(ε) + δvξ (ε)p0(ε)

]
ε2

∫
4π

YlmdΩ. (42)

The vector integral in Equation (41)
∫

4π
Ylmeξ dΩ is nonzero

only for the dipole l = 1; the scalar integral
∫

4π
YlmdΩ in

Equations (40) and (42) becomes zero in all instances except
for the monopole l = 0. Although the fluxes integrated over full
solid angle can vanish identically owing to the specific nature
of the spherical harmonics, the sectorial flux density may not.

As an inner boundary condition we demand that the flux must
vanish in each direction, that is,

lim
ξ→0

[fρ(ξ )ṽ(ξ ) + ρ̃(ξ )fvξ
(ξ )]ξ 2 = 0, (43)

lim
ξ→0

[fρ(ξ )ṽ2(ξ ) + 2ρ̃(ξ )ṽ(ξ )fvξ
(ξ ) + fp(ξ )]ξ 2 = 0, (44)

lim
ξ→0

ρ̃(ξ )ṽ(ξ )fvτ
(ξ )ξ 2 = 0, (45)

lim
ξ→0

[
1

2
fρ(ξ )ṽ3(ξ ) +

3

2
ρ̃(ξ )ṽ2(ξ )fvξ

(ξ )

+
γ

γ − 1
(fp(ξ )ṽ(ξ ) + fvξ

(ξ )p̃(ξ ))

]
ξ 2 = 0. (46)

The very unique inner boundary condition is the one majoriz-
ing term in Equations (43)–(46) that guarantees the fulfillment
of all four conditions. To find this majorizing term, we have to
determine the relation among perturbed variables.

First, we note that the unperturbed variables asymptotically
behave at the origin (ξ → 0) as (Sedov 1959)

ρ0 = a0ξ
a−2, v0 = b0ξ, p0 = c0 + c1ξ

a,

a = 1 + γ (2 − ω)

γ − 1
,

κ1 = 2(3 − ω)

(ω − 5)(γ − 1)
, κ2 = (1 + γ )ω − 6

6 − 3γ − ω
,

κ3 = γ 2(ω2 − 4ω + 13) + γ (ω + 1)(ω − 7) − 2ω + 12

(ω − 5)(3γ + ω − 6)(3γ − 1)
,

a0 =
(

1 + γ

2γ

)κ1
(

1 + γ

γ

)κ2
(

ω − 2γ +1
γ

ω − 7−γ

1+γ

) 3−ω
γ−1 κ3

,

c0 =
(

1 + γ

2γ

) 6
5−ω

(
1 + γ

γ

)κ2+1
(

ω − 2γ +1
γ

ω − 7−γ

1+γ

)3κ3

,

b0 = γ + 1

2γ
, c1 = a0b

2
0
γ (5 − ω) − 2

γ (2 − ω) + 1
. (47)

Here a > 1 for 0 � ω < (7 − γ )/(γ + 1) and γ > 1. This
particularly means that the term dp̃/p̃dξ is asymptotically
negligible compared to other terms in Equation (16), as well
as in Equation (25), but the other term with pressure ∼ ρ̃/p̃ and
the pressure gradient itself matter.

The coefficients of the system (21)–(23), (25) asymptotically
behave as power functions at the origin. Therefore, we look
for solutions for perturbations as power laws in ξ . From
Equation (21) we find fvξ

∼ ξ 3−afρ , fvτ
∼ ξ 3−afρ ; from

Equation (22) we get also fp ∼ ξa−1fvξ
∼ ξ 2fρ . Equations (23)

and (25) confirm relations found.
Suppose that

fρ = Fρ0ξ
α (48)

5
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with some constant amplitude fρ0; then, similarly, we get

fvξ
= Fvξ 0ξ

3−a+α, fvτ
= Fvτ 0ξ

3−a+α, fp = Fp0ξ
2+α. (49)

The solution for perturbations then can be assembled in a vector
form as

f = F0(ξ )ξα, F0(ξ ) = (Fρ0, Fvξ 0ξ
3−a, Fvτ 0ξ

3−a, Fp0ξ
2)T .

(50)
Substituting Equations (48), (49) into Equations (21)–(23), (25),
we get the system of homogeneous linear algebraic equations
for the amplitudes (Fρ0, Fvξ 0, Fvτ 0, Fp0), from which we find
four roots for α as the eigenvalues. The asymptotic solution
is ultimately a superposition of four branches with some
amplitudes Ci

f =
4∑

i=1

CiF0i(ξ )ξαi . (51)

One of the roots, say, α1, describes a divergent solution for a
point source, while the three others are the regular ones. The
analytical expression for this exponent α1 is quite cumbersome;
its existence can be checked numerically. However, we manage
without its explicit expression by specifying conditions directly
to amplitudes.

Substituting Equations (48), (49) into the boundary
fluxes (43)–(46), we find that the asymptotics ξ 3+α for the mass
flux and all terms in (43) are of the same order. The asymptotics
for the momentum fluxes is ξ 4+α , and all terms in (44) and (45)
are of the same order again. And finally, for the energy flux the
asymptotics is ξ 5−a+α , which is determined by the dominating
term fvξ

ξ 2. The majorizing term among these is that whose
power exponent is the minimum one. If a < 2, the mass flux
dominates; if a > 2, the energy flux does. In the latter case the
majorizing term is fvξ

ξ 2; in the former case vanishing of fvξ
ξ 2

implies vanishing of all other perturbation terms.
Thus, the inner boundary no-source condition yields the

equation

fvξ
ξ 2

∣∣∣
ξ=0

= 0. (52)

2.5.3. Inner Boundary Condition for the Flow with a Hollow Cavity

The inner boundary condition for the shell-like flow can be de-
rived as the condition for a contact interface in the point ξin > 0
separating gas and vacuum. Two conditions must be fulfilled
simultaneously for the contact discontinuity: (1) there is no flux
through the shifted boundary, and (2) the pressure at the shifted
boundary is identically zero. Equations for these can be practi-
cally derived from the general matching conditions (4)–(6) by
nulling the left-hand side and by substituting the displacement
of the inner boundary ηin for η and the subscript “in” for “s.”
We obtain two conditions for the velocity and for the pressure
(Ryu & Vishniac 1991)

fvξ
= −

(
γ + 1

2
+

is

4
(γ + 1)(5 − ω) +

dṽξ

dξ

∣∣∣∣
ξin

)
ηin, (53)

fp = −dp̃

dξ

∣∣∣∣
ξin

ηin. (54)

Accurate within a misprint, these formulae coincide with those
deduced by Ryu & Vishniac (1991). Elimination of ηin sets the
seemingly desired relation between two unknown quantities.

A more thorough analysis shows, however, that while
(dṽξ /dξ )|ξin

in Equation (53) remains finite and nonzero, the
derivative (dp̃/dξ )|ξin

in Equation (54) can either diverge or
vanish. Indeed, we know from Sedov (1959) an asymptotical
behavior of unperturbed pressure near the inner boundary

p̃(ξ ) ≈ p̃0 · (ξ − ξin)μ+1, p̃0 = const, (55)

where μ, determined as

μ = ω(1 + γ ) − 6

6 − 3γ − ω
,

7 − γ

γ + 1
� ω < 3, (56)

reverses sign in the tolerance interval of ω. Thus, Equations (53)
and (54) in reality are a singular system.

The correct condition can be derived by exceeding the limits
of linear approximation and by using property ii of the contact
discontinuity. Since from now on we temporally use nonlinear
dependencies, let us temporally consider all perturbations as
real variables. For the perturbed pressure p̃′

1 at the perturbed
inner boundary in the first order we have

0 = p̃′(ξin + ηin) = p̃0 · (ηin)μ+1 + fp, ηin > 0;
0 = fp, ηin < 0. (57)

Taking into account Equations (53), (54), (55), and (57), we
finally get a nonlinear relation:

fp ∝ f μ+1
vξ

, ηin > 0. (58)

In the case μ > 0, considering the vanishing amplitude limit,
fvξ

→ 0, we find |fp| � |fvξ
| or asymptotically

fp

∣∣∣
ξin

= 0. (59)

For μ < 0 the situation is reversed,

fvξ

∣∣∣
ξin

= 0. (60)

In the particular case μ = 0 we come back to the initial
Equations (53) and (54).

3. AMPLIFICATION OF DISTURBANCES
BY THE SHOCK WAVE

In order to know whether the shock wave amplifies pertur-
bations or not, we have to find the structure of the perturbed
postshock flow. We expect amplification first of all in the case
of resonance between the free (i.e., self-excited) oscillations of
the flow and oscillations excited by the external perturbations if
resonance only exists.

3.1. Self-excited Oscillations and Resonance Conditions

The eigenmodes of the shock flow were studied in detail
by Ryu & Vishniac (1987, 1988); Vishniac & Ryu (1989),
and Kushnir et al. (2005) for the filled flow and by Goodman
(1990) and Ryu & Vishniac (1991) for the shell-like flow. To
find the resonance conditions, we calculated first the dispersion
relations for free oscillations guided by the approach of the
aforementioned authors.

Zeroizing the amplitudes of the external perturbations, one
finds the structure of the perturbed flow inside the shock wave
by solving in the interval ξin � ξ � 1, ξin � 0 the system of

6
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Figure 1. Image part of dispersion curves (frequency s vs. orbital wavenumber
l) for the blast-wave free oscillations in the case of the uniform background
(ω = 0, γ = 1.1). Positive Im(s) correspond to unstable oscillations. Dashed
lines indicate location of the resonance point.

linear ordinary differential equations (ODEs) (21)–(23), (25)
for unknown variables fvρ

(ξ ), fvξ
(ξ ), fvτ

(ξ ), fp(ξ ), η with
the outer (35)–(37) and inner (52), (59), or (60) boundary
conditions. The frequency s of free oscillations is then found
as an eigenvalue.

The typical dispersion dependencies of s on the wavenumber l
for the initial few lower-order modes are presented in Figures 1
(solid flow, ω = 0, γ = 1.1) and 2 (shell flow, ω = 2.7,
γ = 4/3). Each mode meets a particular number of nodes of
oscillations along radius. The upper mode in Figures 1 and 2 is
the principal one (no nodes), the other ones, from top downward,
higher order, so-called reflection modes have 1, 2 and so on
indefinitely nodes. The flow with γ close to 1 approximates the
radiative flow to some degree, while γ close to 5/3 pertains to
pure adiabatic flow.

Suppose that the external perturbation has frequency s∗ and
wavenumber l∗. It will be the resonant one if the point (s∗, l∗)
is disposed exactly on the dispersion curve s(l) (represented by
dashed lines in Figures 1 and 2) or in its close vicinity. We
would like to remind that s∗ and s(l) take on the complex values
in the general case and hence (s∗, l∗) and s(l) must coincide
not only in the imaginary parts, as is displayed in Figures 1
and 2, but also in real parts. Since we have adopted the uniform
distribution of external perturbations, their frequencies s∗ can
only be imaginary ones according to Equations (32) and (33)
and nonnegative if ω � 0. Then the equality of frequencies is
possible in the increment domain where Ims(l) � 0. Numerical
linear analysis (Ryu & Vishniac 1987, 1991) shows that the
unstable regimes exist at γ < 1.2 for the solid flow (ω = 0) and
for any permitted γ in the case of the shell flow.

The condition for resonance

Re s(l∗) = 0, Im s(l∗) = s∗ � 0 (61)

is fulfilled for the entropy mode in the case of the solid flow
only in the origin at the point

s∗ = 0, l∗ = 0; ω = 0, (62)

whereas the unstable section 101 � l � 102 (Figure 1) corre-
sponds to nonzero Re s(l).
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Figure 2. Same as in Figure 1, but for the nonuniform background (ω = 2.7,
γ = 4/3).

In the shell case the resonance frequency for the entropy mode
cuts the sequence of points with high wavenumbers

s∗ = i · 2.347 . . . , l∗ ≈ 230, 700, . . . ; ω = 2.7; (63)

they are located beyond the object area in Figure 2.
The resonance condition for the vortex mode,

s∗ = 0.6i; ω = 0, (64)

is never fulfilled for the solid flow by the same token Re s(l) �= 0
but is fulfilled at growing unstable branches for the shell flow
and specifies another sequence of points (Figure 2)

s∗ = i · 0.1304 . . . , l∗ ≈ 18, . . . ; ω = 2.7. (65)

3.2. Forced Oscillations: Amplification of
Disturbances behind the Shock Front

In order to find the structure of the postshock flow perturbed
by external disturbances, we have to find the eigenfunctions
considering the arising mathematical problem as an eigenvalue
problem.

Given the amplitudes and frequency of the external perturba-
tions, the structure of the perturbed flow inside the shock wave
is determined by solving in the interval ξin � ξ � 1, ξin � 0
the system of linear ODEs (21)–(23), (25) for unknown vari-
ables fvρ

(ξ ), fvξ
(ξ ), fvτ

(ξ ), fp(ξ ) with the outer (35)–(37) and
inner (52), (59), or (60) boundary conditions. These unknown
variables represent the eigenfunctions for the problem, while η
is now an eigenvalue. We find the root η by multiple shooting
method terminating iterations upon reaching relative precision
of at least 10−4. In the case of the filled cavity the problem
may become stiff; this dictates sometimes a need for much bet-
ter accuracy to satisfy the inner boundary condition. Figure 3
demonstrates the typical behavior of the eigenfunctions in the
case of shell-like flow.

To estimate the possible amplification of perturbations by the
shock wave, we introduce the following coefficients:

density amplification

R = |fρs
|

|fρ0 |
, (66)

7
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Figure 3. Real parts of the eigenfunctions for the density, radial velocity, and
pressure perturbations (solid lines), the tangential velocity (dashed line), and the
external vorticity perturbations (lines for ξ > 1) in the case of the shell-like flow
(l = 10, s = 0.1304i, ω = 2.7, γ = 4/3). The imaginary parts are identically
zero.

velocity amplification

Ξ = |fvs
|

|fv0 |
, (67)

and vorticity amplification

Ω = |curl fvs
|

|curl fv0 |
. (68)

Accounting for an explicit form for the curl of the vector δv
with zero binormal component in natural coordinates

∇ × δv = eb

(
dδvτ

dξ
+

δvτ

ξ
− δvξ

ξ

)
, (69)

we can write out the vorticity amplification coefficient in full as

Ω =
∣∣ξ dfvτ

dξ

∣∣
s

+ fvτs
− fvξs

∣∣
|fvξ0 − fvτ0 |

. (70)

All these coefficients of amplifications are ratios of amplitudes
and time-constant by definition.

First, let us consider the vortex mode whose frequency is
given by Equation (33).

The simplest perturbation of the velocity field is a uniform
motion δv0 = const, which contains only a dipole component in
spherical harmonics expansion and corresponds to a steady drift
of the whole shock wave. Such a flow is purely irrotational; the
denominator in (68) vanishes, but the numerator remains finite.
We can observe this effect as a resonance at l = 1 in the case of
the uniform background (Figure 4). The same effect exists, of
course, in the case of any background that involves δρ0 �= 0, but
since we consider the vortex and the entropy modes separately,
we do not observe this resonance in other figures.
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Figure 4. Vorticity amplification coefficient (Equation (68)) as a function of
the orbital wavenumber l for the uniform (upper plot) and the nonuniform
background (lower plot).

Let us remember that the curl of velocity for any har-
monic (20) is expressed as a product of an amplitude depending
on ξ and the angular part lYlm. Thus, the coefficient (68) actu-
ally presents the amplitude ratio irrespective of lYlm. The limit
l → 0 thus provides an evaluation of indeterminate form as zero
divided by zero because the vorticities themselves, δv0(l = 0)
and δvs(l = 0), vanish.

From Figures 4 and 5 we see that vorticity intensifies sub-
stantially up to 20 times within the wavenumber range un-
der consideration out of resonance while the velocity fluctu-
ations are damped. The reason for vorticity amplification is
that the rippled shock front generates the shear flow. While the
radial velocity perturbations are strongly suppressed, the tan-
gential perturbations are excited. For instance, for the short-
wave perturbation l = 10 whose eigenfunctions are depicted in
Figure 3, the preshock velocity perturbations are radially dom-
inated owing to relation (28) (fvξ0 = 1.0, fvτ0 = 0.006), but
the amplitudes of the postshock velocity components equal-
ize (fvξs

= 0.19, fvτs
= 0.17). Along with that, the tangential

perturbation derivative dfvτ
/dξ undergoes a steep rise from

8
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Figure 5. Same as in Figure 4, but for the velocity amplification (Equation (67)).

zero before the shock to 3.1 behind the shock (see right bot-
tom inset in Figure 3), building up vorticity significantly (see
Equation (70)).

The most intriguing effect is the resonance that we find in
the case ω = 2.7 at the resonant wavenumber l = l∗ given
by Equation (65). The insets in Figures 4 and 5 show that the
resonance width is rather small and equals Δl ≈ 0.4 for vorticity
and <0.1 for velocity amplification. Here the resonance width
is defined as a range of wavenumbers l in which the frequency
differs from the mean values by the value of ΔIm s ∼ 0.1.
Strictly speaking, according to the linear theory of oscillations
the width of resonance in the dissipationless case is negligible
so long as the width is usually defined as the interval at which
the frequency differs no more than twice from the maximum
value.

The density perturbations in the entropy mode are amplified
out of resonance only in the case of the accelerating shell blast
wave (ω = 2.7), whereas they are damped by the decelerating
solid blast wave (ω = 0) (Figure 6).
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Figure 6. Same as in Figure 4, but for the density amplification (Equation (66)).

Resonance prescribed by Equation (62) at l = 0, ω = 0
has a greater width: Δl = 2. This resonance describes self-
excitation of radial fluctuations of the shock at negligible
external density perturbations and takes place for arbitrary ω
because dispersion dependencies always comprise the point
(s = 0, l = 0). Suppose that the energy of explosion
undergoes small perturbation E0 → E0 + δE0. Then the relative
displacement of the shock front changes over time as

η = Rs(E0 + δE0, t) − Rs(E0, t)

Rs(E0, t)

= (E0 + δE0)
1

5−ω t
2

5−ω − E
1

5−ω

0 t
2

5−ω

E
1

5−ω

0 t
2

5−ω

∝ t0, (71)

that is, according to Equation (39) the spherical perturbation
will have zero frequency.
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4. DISCUSSION AND CONCLUSIONS

Our linear analysis validates the idea that the blast wave can
amplify both density and vorticity perturbations in the turbu-
lized interstellar medium through resonant shock–turbulence
interaction. This result is consistent with analytic and numerical
studies (Lee et al. 1997; Jamme et al. 2002; Wouchuk et al. 2009)
predicting vorticity amplification by a distorted shock front. As
distinct from the aforementioned works, we study the nonlocal
mechanism of amplification when the wavelengths λ of pertur-
bations are not negligible compared with the shock wave size
Rs. This singles out the resonant nondimensional wavenumbers
at macro- (l = 2πRs/λ ∼ 1), meso- (l ≈ 18), and microscopic
(l > 200) scales. Resonant mesoscales are surprisingly very
close to the observed scales (l ≈ 15) of corrugation structures
in the remnant SNR 0509-67.5.

On the other hand, there are some factors negating the
effectiveness of the resonant mechanism. First, the resonance
width is small (typically Δl � 1), and the resonance point can be
clamped between two nearly integer points l. Since the observed
orbital wavenumbers l must be integer values, the amplification
for these will not be too large.

The resonance range can grow in size, however, with an
increase in dissipation. The linear theory of oscillations predicts
that the resonance width of frequencies is proportional to the
doubled decay coefficient. Taking into account that in our self-
similar problem the frequency is defined as s log(t/t0)/t and
the decay has to be stipulated by the turbulent viscosity, we find
that ΔIm s log(t/t0)/t ≈ 2νturb/λ

2, where νturb is the turbulent
kinematic viscosity. The length of the perturbation inside the
shock wave can be estimated as λ ≈ 2πRs/

√
l2 + n2, while the

kinematic viscosity approximately is νturb ≈ 1/3lturbcs , where
cs is the postshock sound velocity and lturb is the characteristic
scale of a turbulent vortex. Expressing the resonant width in
terms of the wavenumbers for the resonant case considered in
our model, n = 0 and l = l∗, we get

Δl

l∗
≈ l∗lturbcst

6π2R2
s log(t/t0)

(
dIm s

dl

∣∣∣∣
l∗

)−1

. (72)

The postshock sound velocity is determined through the rela-
tions (10) and (12):

cs = Z
Rs

t
, (73)

where

Z = 2
√

2γ (γ − 1)

(5 − ω)(γ + 1)
. (74)

For γ = 1.1 and ω = 0 we have Z ≈ 0.089; for γ = 4/3
and ω = 2.7 the coefficient Z is something like 0.35. Since
the propagating shock embraces growing scales, we estimate
the turbulent vortex scale lturb as proportional to the shock front
radius Rs with a fixed constant of proportionality ξturb. Collecting
all estimates, we finally obtain

Δl

l∗
≈ l∗ξturbZ

6π2 log(t/t0)

(
dIm s

dl

∣∣∣∣
l∗

)−1

. (75)

The numerical calculations (Figure 2) show that the derivative
of the dispersion relation dIm s/dl|l∗ amounts to ∼0.1 at the

resonant point l∗ = 18. Assuming ξturb ≈ 0.1, we find

Δl

l∗
log(t/t0) ≈ 0.025, (76)

which is close to the width of resonance found numerically
(Figures 4(b) and 5(b)).

The estimates adduced show that the resonance range subject
to the existence of dissipation is small but widens and cannot
be vanishingly small if the resonance occurs at a more gently
sloping dispersion curve (dIm s/dl|l∗ → 0) and for higher-order
harmonics l∗ and n.

Secondly, to excite resonant oscillations noticeably, the am-
plitude of resonant harmonics in the spectrum of external per-
turbations should be nonnegligible. Suppose that the turbulent
fluctuation energy distribution over discrete orbital quantum
numbers l has a power dependence like the Kolmogorov law
f 2

l ∼ l−5/3, and if we are fortunate it starts from lmin, where
lmin is close to the resonant number l∗ = 18; then the relative
square of amplitude of the l = lmin = 18 mode amounts to
f 2

lmin
/(

∑∞
l=lmin

f 2
l ) ≈ 3.7% of the total energy of fluctuations.

The estimate can be reduced significantly if lmin < l∗.
To clarify the real effectiveness of the resonant mechanism

of amplification, a direct numerical simulation is required.
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