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Abstract We present an original method for recognition of different types of hydrodynamic discontinuities
such as shock fronts and tangential discontinuities, smooth types of flows such as rarefaction waves, and
their intensities simultaneously. The method is based on invariants of a strain velocity tensor of hydrody-
namic flow. We demonstrate the advantages of this new technique by way of giving an example of a
supersonic turbulence produced by a blast wave from a point explosion propagating in a ‘cloudy’ inho-
mogeneous medium.
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1 Introduction

Hydrodynamic flow analysis often requires detection of a shock-wave or other types of discontinuities.
There are many methods of discontinuity detection, as a rule, each one oriented at recognition of a specific
type of jumps (Vorozhtsov and Yanenko 1980). In ordinary cases calculation of velocity divergence,
vorticity or schlieren map is sufficient.

Complex flows such as turbulent flows, and especially supersonic turbulent flows require simultaneous
detection, recognition, and tracking numerous discontinuities. In such a case localization of jumps and their
identification require a more delicate and precise technique. This poses a challenge of developing an easy-
to-use universal arbitrary-jump-capturing technique applicable to all types of flow.

In the present paper we propose an original advanced method of recognizing, apart from different types
of hydrodynamic discontinuities, smooth types of flows such as rarefaction waves, and their intensities
simultaneously.
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2 The method

Given the velocity vector field vðxÞ; recognition of subdomains of qualitatively different types of flow such
as jumps or smooth compression/expansion or shear is required.

Locally, the flow field is characterized by the velocity gradient tensor qvi/qxj which can be decomposed
into the antisymmetric part (vorticity) and the symmetric part (the strain velocity tensor)

Dij ¼
1

2

ovi

oxj
þ ovj

oxi

� �
; i; j ¼ 1; 3: ð1Þ

We postulate the coordinate independence of the method; this implies that recognition should be based
on the invariant characteristics.

The rate of strain tensor has three functionally independent characteristics which can be taken as its
eigenvalues ki describing deformation rate intensity. The principal directions of the tensor are always
mutually orthogonal providing a natural basis for the problem.

Vorticity, which characterizes locally a solid-body rotation, is actually a vector and has a unique
invariant in itself, its length. Consideration of vorticity and strain tensor in a cojoint 3-dimensional space
yields two other invariants, angles specifying orientation of vorticity vector relative to the basis prescribed
by the strain velocity tensor. Thus we have six invariants in total.

If we decide to distinguish different kinds of flow merely by different colors, we then have only two
degrees of freedom: the color tone and its brightness.

Therefore our suggestion is to abandon vorticity and to concentrate only on deformations. This forces us
to retrieve the key information on deformations from two parameters that must be constructed as combi-
nations of the strain velocity tensor eigenvalues.

Of three principal directions for the rate of strain tensor we single out those two meeting the requirement
of maximum ðmaxfk1; k2; k3gÞ and minimum ðminfk1; k2; k3gÞ rates of deformation. Then we single out the
subspace spanned by these two principal directions and designate this as a principal plane. The difference
maxfk1; k2; k3g �minfk1; k2; k3g characterizes the degree of non-uniformity of deformation in this prin-
cipal plane. Then we define the first parameter D1 further referred to as the deformation index, as a certain
ratio of this measure of non-uniformity to the relative velocity of volume change at any given point.

D1 ¼
maxfk1; k2; k3g �minfk1; k2; k3g

k1 þ k2 þ k3

: ð2Þ

This index serves as a quantitative measure for distinguishing different types of deformation in the principal
plane irrespective of their intensity. The typical values of D1 and corresponding kinds of deformation are
presented in Table 1. Recall that all deformations are determined here without regard to vorticity. This
means that all kinds of deformations with an accuracy to solid-body rotation are equivalent ones, as for
instance, simple shear and pure shear.

Table 1 Deformation index D1 specific values [see definition (2)]

ki Type of deformation D1

k1 \ 0, |k2| & |k3|
|k1| � {|k2|, |k3|, |k2 ? k3|}

1-Dimensional compression (shock-wave discontinuity) &-1

k1 [ 0, |k2| & |k3|
k1 � {|k2|, |k3|, |k2 ? k3|}

1-Dimensional extension (1-dimensional rarefaction wave) &1

{k1, k2} \ 0
{|k1|, |k2|} � |k3|, k1 & k2

Uniform 2-dimensional compression &-0.5

{k1, k2} [ 0
{k1, k2} � |k3|, k1 & k2

Uniform 2-dimensional extension &0.5

{k1, k2} \ 0, k3 [ 0
|k1| & |k2| & k3

Uniform compression in two directions and extension in a third one &-2

{k1, k2} [ 0, k3 \ 0
k1 & k2 & |k3|

Uniform extension in two directions and compression in a third one &2

k1 & k2 & k3 = 0 Uniform overall compression or expansion &0
k1 ? k2 ? k3 & 0 particularly,

k1 & -k2, k3 & 0
Isochoric deformation including isochoric plane deformation (pure

shear, tangential discontinuity)
� �1ðjD1j � 1Þ
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As is seen from the Table 1, one can easily distinguish between the shock-like and tangential discon-
tinuities. To differentiate strong and weak jumps we determine an additional parameter, the second
deformation index

D2 ¼ maxfjk1j; jk2j; jk3jg; ð3Þ

which specifies the intensity of deformation irrespective of type of deformation.
For visualization of flow patterns each type of deformation is assigned different color. We associate

basic colors of RGB palette with the specific values of deformation index: D1 = 1 – red, D1 = 0 – green,
and D1 = -1 – blue (Fig. 1). Other intermediate values of D1 are represented by a mixture of these prime
colors. The Gaussian functions

rðD1Þ ¼ e�aðD1�1Þ2 ; gðD1Þ ¼ e�aD2
1 ; bðD1Þ ¼ e�aðD1þ1Þ2 ; ð4Þ

with the inverse width a = 1 provide a good fitting of the hue intensities. The final hue intensity is
determined by using index D2 as follows

RðD1;D2Þ ¼ ð1� rðD1ÞÞ � ð1� D2=maxðD2ÞÞ þ rðD1Þ;
GðD1;D2Þ ¼ ð1� gðD1ÞÞ � ð1� D2=maxðD2ÞÞ þ gðD1Þ;
BðD1;D2Þ ¼ ð1� bðD1ÞÞ � ð1� D2=maxðD2ÞÞ þ bðD1Þ:

ð5Þ

Here max(D2) is the maximum value of index D2 in the whole computational domain.
Depending on the numeric value of D1 we can obtain from (4) either a pure basic color {r, g, b} or a new

color as a result of composition of basic colors (Fig. 1). Namely, in the case jD1j.1=3
ffiffiffi
a
p

or jD1 �
1j.1=3

ffiffiffi
a
p

we have one of three basic colors, while in the gaps between these intervals we have either the
basic color or a mixture of two adjacent basic colors. For example, the value D1 = 0.5 typical for the areas
of 2-dimensional expansion gives the yellow pixel as a mixture of red and green while the contribution of
the blue color vanishes [see Eq. (4)]. Finally, when |D1| � 1 all these three basic colors {r, g, b} mix in
almost equal shares which should produce black color.

Subject to the parameter D2 the resulting color {R, G, B} can either remain unchanged or be inverted
[Eq. (5)]. In the areas of weak deformation [D2 � max(D2)] the black or dark-gray hues transform to white
or light-gray ones ({R, G, B} ? 1). However one cannot speak about an opposite transformation of the
white tone {r, g, b} to the black one {R, G, B} because the combination (r = g = b = 1) is not possible for
any D1. The color box in Fig. 2 (left plot) illustrates distribution of colors for different pairs (D1, D2).

The use of formulae (4), (5) does not exclude a possibility of applying of other specific filters in
concordance with the aims of the specific problem. For example, instead of the Gaussian functions in (4) one
can use the roof functions and instead of the quasi-linear color modification via D2 according to (5) one can
apply the smooth relations like hyperbolic tangent.

Of the three tensor eigenvalues one can compose no more than three functionally independent invariant
values. Index D1 contains information on deformations in the principal plane but says nothing about the
deformation in the orthogonal direction. If one wishes to describe deformation in this third, complement,
direction, the set of invariants should be supplemented by a third invariant which could be determined by
analogy with D1 but in reliance on the third still not used mediate ki

Fig. 1 Association of different types of deformations and relevant discontinuities with RGB-palette
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D01 ¼
maxfk1; k2; k3g �midfk1; k2; k3g

k1 þ k2 þ k3

; ð6Þ

where

midfk1; k2; k3g ¼
X3

i¼1

ki �maxfk1; k2; k3g �minfk1; k2; k3g: ð7Þ

However, as we see further it is more convenient to design the relative value equivalent to eccentricity

D3 ¼
maxfk1; k2; k3g �midfk1; k2; k3g
maxfk1; k2; k3g �minfk1; k2; k3g

: ð8Þ

By definition D3 assumes values in the range between 0 and 1. It appears as a measure of anisotropy of local
deformation in the plane orthogonal to the principal direction corresponding to the maximum eigenvalue.
Index D3 proves to be useful in visualization of incompressible flows where D1 and D01 degenerate becoming
infinite. Without regard to D3 the whole flow field should be colored in gray tone whose intensity depends on
D2. In this case, to analyze incompressible flows one can associate the color palette with parameter D3.

In case of incompressible flow the relation between all three eigenvalues can be parameterized by the
unique value a

k1 ¼ k; k2 ¼ ða� 1=2Þk; k3 ¼ ð�a� 1=2Þk; ð9Þ

where a ¼ ð�1;þ1Þ; and k is an arbitrary non-zero quantity. It is easy to show that transformations

a! �a ð10Þ

and

a! 2aþ 3

4a� 2
ð11Þ

convert the set of eigenvalues to themselves within the accuracy of relabeling eigenvalues or their syn-
chronous rescaling which does not affect D3. This means that consideration of the interval [0,3/2] is quite
sufficient. The transformation (11) maps this interval [0,3/2] into the interval ½3=2;1Þ; and then (10)
spreads the positive-definite semiinfinite interval on the whole number axis. Figure 3 illustrates the
dependence of D3 on a. The singled out values for D3 are 0, 1/2 and 1, whose physical meaning is explained
in Table 2.

In case of compressible flows one cannot use both D1 and D3 simultaneously with D2 because we are
limited by the drawing tools to only two degrees of freedom—the color and intensity. Index D1 proves to be
the most informative parameter since it allows identification of the basic types of jumps or smooth
deformations. At the same time, it allows identification of tangential discontinuities both in the compressible

Fig. 2 Left plot Distribution of colors for different combinations (D1, D2). Right plot Shock fronts (blue) and tangential
discontinuity (dark gray) formed after a primary shock reflection from a flat surface (left margin)
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and incompressible flows. In the former case they are depicted by gray tones or by black color depending on
D2: in the latter case one can bind tangential jump to some specific color for D3 = 1/2. Thus, the procedure
of visualization developed by us covers all kinds of flat deformations irrespective of the kind of flow. Its
advantage becomes apparent in that it is based on invariant characteristics that makes it applicable to
arbitrary computational grids.

3 Numerical examples

The right plot in Fig. 2 demonstrates a simple example of discontinuities extraction from the velocity field
which is obtained from computational simulation of a spherical shock reflection from a flat surface. Three-
wave interaction of initial shock, reflected shock and a Mach stem form a Y-shape shock configuration with
a weak flocculent shear discontinuity in the post-shock domain.

Fig. 3 The dependence of D3 on a-parameter

Table 2 Deformation index D3 specific values [see definition (8)]

ki a Type of deformation D3

k1 ¼ k3 ¼ � 1
2
k2 a = -3/2 2-Dimensional extension, 0

k1 ¼ k2 ¼ � 1
2
k3 a = 3/2 1-Dimensional compression (Fig. 4a)

k1 = -k2, k3 = 0 a = -1/2 Plane isochoric deformation, 1/2
k1 = -k3, k2 = 0 a = 1/2 e.g. tangential discontinuity (Fig. 4c)
k1 = 0, k3 = -k2 a ¼ �1
k2 ¼ k3 ¼ � 1

2
k2 a = 0 1-Dimensional extension,

2-Dimensional compression (Fig. 4b)
1

Fig. 4 Different kinds of deformations in incompressible flow: a flattening, b stretching, c isochoric plane deformation (pure
shear strain, tangential discontinuity)
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The method developed becomes most effective when applied to the problems of complex gasdynamic
flows with multiple discontinuities. One of these is the problem of a blast wave propagation in a non-
uniform medium with multiple small-scale non-homogeneities of density. Such a problem can be met with
in astrophysics of multi-phase interstellar medium segregated into small dense cloudlets and rarefied in-
tercloud gas (Ostriker and McKee 1988).

The results of numerical simulation of supernova remnant evolution (Korolev 2006) are presented in
Fig. 5 as a sequence of states of a blast wave produced by a supernova explosion. At early stages of
supernova remnant expansion its inner regions are colored in green, which corresponds to uniform dilatation
(Fig. 5, top-left). After first encounters with clouds the interaction between primary shock and clouds
produces a multitude of secondary shocks (blue curves) and tangential discontinuities (black lines), and the
riot of colors grows up (Fig. 5, top-right and bottom-left). Fauvist-like (Bowness et al. 1979) patterns of
early stages of expansion gradually transit to pastel tones of the final stage when the shock wave decelerates
and motion decays (Fig. 5, bottom-right). Please see the accompanying animation (Online Resource 1).

Fig. 5 Supernova remnant evolution in a cloudy medium: top-left age 13� 103 years, radius *25 pc; top-right age 52� 103

years, radius *40 pc; bottom-left age 114� 103 years, radius *50 pc; bottom-right age 350� 103 years, radius *60 pc. Left
half of each plot shows the gas density distribution while color-maps of deformation index D1 are shown on the right half. The
density scale is equal for all images while the spatial scale is lengthening
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