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a b s t r a c t

A new method for the line-of-sight velocity estimation of a high-speed near-Earth object
(asteroid, meteorite) is suggested. The method is based on the use of fractional, one-half
order derivative of a Doppler signal. The algorithm suggested is much simpler and more
economical than the classical one, and it appears preferable for use in orbital weapon
systems of threat response. Application of fractional differentiation to quick evaluation
of mean frequency location of the reflected Doppler signal is justified. The method allows
an assessment of the mean frequency in the time domain without spectral analysis.
An algorithm structure for the real-time estimation is presented. The velocity resolution
estimates are made for typical asteroids in the X-band. It is shown that the wait time
can be shortened by orders of magnitude compared with similar value in the case of
a standard spectral processing.

& 2014 IAA. Published by Elsevier Ltd. All rights reserved.
1. Introduction

The eventful month between mid-February and mid-
March 2013 reminded the mankind that the asteroid-comet
threat is real. ‘Chebarkul’ super-bolide which exploded
on February 15, 2013 over the densely populated region
of Chelyabinsk caused damage of buildings and injuries of
people. Close flybys of two potentially hazardous asteroids
2012 DA14 [1] and 2013ET [2] at 0.07 and 2.5 lunar distances
from Earth, 44 and 100 m in diameter respectively, both able
to ruin a city, also received extensive coverage in mass-media.
Besides, the latter one was discovered just 6 days before its
closest approach to Earth while the Chebarkul meteorite was
only recorded after it had entered the Earth atmosphere.

These events confirmed a universal truth: with the
means of near-Earth space scanning what they are now, a
hazardous near-Earth object (NEO) can remain undetected
ll rights reserved.

. Zakharchenko),
on the distant approaches to Earth, leaving very little time
to react. Thus the long discussed problem of protecting the
Earth from cosmic threats requires a quick transition to the
phase of practical realization.

Protecting the planet from cosmic threats means detec-
tion of hazardous NEOs, measuring their parameters of
motion, trajectory calculation, and their destruction or, at
least, prompt alert of the national services for the popula-
tion protection in the threatened area.

Prior works propose implementing cosmic threat pro-
tection through deployment of detection and destruction
systems on the near-Earth orbits [3–5]. The combat plat-
forms deployment on the geostationary orbit is advanta-
geous for a variety of reasons: (i) ground station contact
can be maintained permanently by directional antennae
and (ii) an asteroid's approach in the eclipse plane is the
most expected; the angle between geostationary orbit
plane and eclipse (231) is not large enough to obstruct
operation of the communications and targeting facilities.

At the most dangerous speeds of 30–60 km/s an aster-
oid's approach time from the Lunar orbit to the geosta-
tionary orbit is about 100–200 min. In this scenario the
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Fig. 1. A scheme of the asteroid-comet threat counteraction at the
final stage.
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time for location, selection, and maneuver is much limited
and the success of action (to eliminate the threat) depends
on the precision of aim.

The most reliable and accurate information can be
obtained from radiolocation measurements of the aster-
oid's distance and radial velocity. They allow of robust
prediction of motion of the hazardous celestial body [6,7].
Besides, the radiolocation method is much easier in
application in the near-Earth space directly.

When determining the coordinates of the cosmic object
one needs a quick, accurate prediction of its trajectory
so as to calculate the kill point. It is obvious that at the
terminal phase of target approach parameters of the
asteroid motion must be measured near-real-time by the
radar system based on the weapon system (e.g. missile)
when homing (Fig. 1). Since the distance between a missile
and an asteroid is relatively small at the final stage of self-
homing (tens or hundreds of kilometers), there are no
specific requirements for the operational range of the
radar system. At such a large relative velocity (≳30 km=s
against �10 km/s), even a minor inaccuracy can disrupt
the difference between the weapon system and the
asteroid target destruction. Under the circumstances the
cost of errors increases manifold and fidelity requirements
should be maximized.

The usual trajectory prediction is done by measuring the
object's velocity through analyzing the Doppler frequency
shift of the reflected radar signal. Measuring Doppler fre-
quency accurately and promptly ensures an effective cosmic
shield.

When different points of the object that form the
reflected signal are moving at different velocities say, upon
the object's rotation, the reflected signal can have a wide
spectrum of Doppler frequencies [8], which correspond
to the spectrum of velocities of reflecting points on the
object's surface. In such a case the gravity center of the
Doppler signal's1 energy spectrum is commonly used. This
1 In radiolocation the Doppler signal means an oscillation achieved
as a result of detecting the signal reflected by the target by means of a
synchronous detector. In this case we assume that the carrier frequency
of the signal emitted by the radar is used as the reference oscillation.
parameter stably corresponds to the center mass motion of
the moving object.

In the present paper a the use of original algorithm of
NEO's high radial velocity estimate within the time of the
Doppler signal arrival is proposed: this algorithm allows
an economical use of the timing budget and computational
resources of the cosmic shield system when making a
trajectory prediction. The authors hope that their contri-
bution to asteroid-comet threats protection will permit, in
a small way, a reduction in the probability of hazards to life
on the Earth in the foreseeable future.
2. Evaluation of the mean frequency of the Doppler
signal spectrum

Evaluation of the spectrum gravity center (mean fre-
quency) ω0 assumes calculation of the energetic spectrum,
that is, spectral processing of the signal x(t), which
requires bulk memory and, above all, a significant amount
of processing time. The latter should be considered unac-
ceptable on tactical grounds with the problem in hand.

The moments method is widely used in the signal
theory for evaluation of the frequency spectrum para-
meters [9,10]. According to this the mean frequency of the
signal's x(t) spectrum on a positive semiaxis is defined as a
gravity center ω0 of its energetic spectrum EðωÞ:

ω0 ¼
Z 1

0
ωW ωð Þ dω¼

R1
0 ωEðωÞ dωR1
0 EðωÞ dω ; ð1Þ

where EðωÞ ¼ j _SðωÞj2; _SðωÞ ¼ F½xðtÞ� is a spectrum density of
the amplitude of the signal which is limited by the
observation interval ½0; T �. Since the weighting function

W ωð Þ ¼ EðωÞR1
0 EðωÞ dω ð2Þ

makes sense of the a posteriori distribution density in the
spectrum of the received signal, the estimate (1) proves to
be optimal involving additive noise [11]. This circumstance
is justified by the fact that the gravity center of the
Doppler frequency spectrum (Fig. 2) is determined by the
velocity of the geometrical center of the reflecting object
Fig. 2. The Doppler signal (a) and its energy spectrum (b).
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whose coordinates and displacement velocity are of inter-
est in the problems of automatic tracking [11].

However one needs to turn to spectral analysis for an
evaluation of spectrum parameters that do not always
conform to operative tasks because the spectrum and its
characteristics must be calculated after the signal has been
received, i.e., beyond the range of observation ½0; T �.

3. Fractional differentiation use for estimation of the
mean frequency

Real-time frequency measurement poses no problems in
the case of monochromatic signal: one just needs to count
the number of positive transitions through zero level per unit
time (quasi-frequency). This design implies a use of averaging
scaling algorithms. We face a problem when the signal of
interest widens (Fig. 2) true to form in the case of different
velocities when the reflecting surface rotates. In this case the
velocity estimate at the quasi-frequency value is not the
same as for the true mean (1); besides the wider the Doppler
signal's width, the greater the error.

A rapid evaluation of the spectrum's mean frequency
requires the maximum speed of on-line calculations at
reception rate of signal counts. Calculation of the energy
spectrum EðωÞ and its moments by the soft-hardware-
based method using discrete Fourier transformation algo-
rithms (including FFT) [9] directly through relation (1)
requires a high computational speed and a great amount
of computations in frequency domain, because one needs a
Fig. 3. The structure of mean frequency ω0 meter by using the method of
fractional differentiation of the Doppler signal x(t).

Fig. 4. The pulse response characteristic h(t) of the fractional differentiating filte
the right of the negative semiaxis and consists of the delta-function defined at z
The function has zero total area under curve (indicated as shaded field).
significant amount of time for the signal counts processing
after the expiration of the observation interval ½0; T�.

The aim of the proposed approach is an increase in the
speed of estimating the Doppler signal mean frequency by
computing ω0 in the time domain as an on-line signal
processing without spectral processing. Here we resort to an
unconventional kind of processing: computation of the
signal's fractional derivative as a new part of signal
becomes available. The algorithm of fractional differentia-
tion is reduced to realization of a digital filter with special
characteristics; this should not cause any major technical
problems.

Calculation of square of the SðωÞ norm in the denomi-
nator in (1) can be made in the time domain as on-line
processing without spectral processing by transforming
the relevant integrals according to Parseval equality [10]Z 1

0
jS ωð Þj2dω¼ 1

2
‖S ωð Þ‖2 ¼ π‖x tð Þ‖2 ¼ π

Z T

0
x2 tð Þ dt: ð3Þ

One can evaluate the numerator of expression (1) in a similar
way which leads to a necessity for fractional differentiation of
the signal:Z 1

0
ωjS ωð Þj2 dω¼ 1

2
‖

ffiffiffiffiffi
jω

p
S ωð Þ‖2 ¼ π‖D1=2x tð Þ‖2

¼ π

Z T

0
jD1=2xðtÞj2 dt; ð4Þ

where D1=2xðtÞ ¼ F�1f
ffiffiffiffiffi
jω

p
F½xðtÞ�g is a fractional time deriva-

tive of order 1/2 operator determined as convolution of the
input signal with the filter pulse response hðtÞ ¼ F�1f

ffiffiffiffiffi
jω

p
g.

As a result, expression (1) can be presented in the form

ω0 ¼
R T
0 jD1=2xðtÞj2 dtR T

0 x2ðtÞ dt
: ð5Þ

Relation (5) shows that the spectrum (1) gravity center
estimate can be formed without spectral processing as a new
part of target reflected signal becomes available and can be
obtained by the end of observation interval T [12,13].

Fig. 3 demonstrates the structure of the algorithm of a
fast gravity center estimate for the signal's x(t) spectrum in
a real-time scale.
r of order 1=2 (a) and its discrete analog (b). The function h(t) is defined to
ero and continuous monotonically increasing branch below abscissa axis.



Fig. 5. The structure of the mean frequency ω0 meter based on the
Hilbert transformation.

2 The quasi-frequency is defined as the average crossing number of
zero level by the signal per time unit.
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The Riemann–Liouville operator of fractional differen-
tiation DαxðtÞ on positive semiaxis [14] in the case α¼ 1=2
takes the form:

D1=2x tð Þ ¼ 1ffiffiffi
π

p d
dt

Z t

0

xðt0Þffiffiffiffiffiffiffiffiffiffi
t�t0

p dt0: ð6Þ

Due to the difference kernel, relation (6) can be treated as
Duhamel's integral that couples signals at the input and
output of the transversal filter with the pulse response.

The step response g(t) at t40 represents the response
to the Heaviside signal sðtÞ and can be calculated sub-
stituting sðtÞ in Eq. (6). Taking into account the Heaviside
function jump we choose the lower limit of integration
as preceded jump by a quantity of ε-0. The causality of
the step function gðto0Þ ¼ 0 can be satisfied by multi-
plying the r.h.s. by sðtÞ:

g tð Þ ¼ s tð Þ lim
ε-0

1ffiffiffi
π

p d
dt

Z t

� ε

sðt0Þ dt0ffiffiffiffiffiffiffiffiffiffi
t�t0

p

¼ s tð Þ lim
ε-0

2ffiffiffi
π

p d
dt

Z ffiffiffiffiffiffiffi
tþ ε

p

0
s t�ξ2
� �

dξ

¼ lim
ε-0

2sðtÞffiffiffi
π

p d
dt

Z ffiffiffiffiffiffiffi
tþ ε

p

0
dξ¼ lim

ε-0

1ffiffiffi
π

p sðtÞffiffiffiffiffiffiffiffiffi
tþε

p :

The pulse response of the fractional differentiating filter
(the eigenfunction of the operator) will have the form
(Fig. 4):

h tð Þ ¼ d
dt

g tð Þ ¼ lim
ε-0

1ffiffiffi
π

p δðtÞffiffiffiffiffiffiffiffiffi
tþε

p � sðtÞ
2ðtþεÞ3=2

" #
; ð7Þ

where δðtÞ is the Dirac delta. It is not difficult to show that
this pulse response obeys requirements (4) and can be
easily realized. Since the pulse response values (Fig. 4a)
affect the low-frequency signal's domain at large time, h(t)
duration can be limited by the value Tmb1=ω0 which is
relatively insignificant at large cosmic objects velocities.

The value of pulse response time delay Tm in the filter
(Fig. 4) will dictate the required ram memory for the
fractional-differentiating filter operation (Fig. 4b): M¼
Tm=ΔT , where ΔT is a sampling interval which is much
smaller than the ram memory required for the spectral
analysis.

An alternative algorithm known from literature also
performs an on-line estimation of spectrum gravity center
[10]:

ω0 ¼
1

2‖x‖2

Z T

0
x tð Þx 0 tð Þ�x0 tð Þx tð Þ� �

dt; ð8Þ

where xðtÞ ¼H½xðtÞ� is the Hilbert transformation of the
signal x(t) and prime stands for time derivative. The
algorithm structure can be presented by the block sche-
matic diagram pictured in Fig. 5.

Here the Hilbert transformation of the signal in its
digital implementation utilizes the Fourier transformation
two times [15]. This algorithm is time consuming and
requires not less but even more time than the method
based on the energy spectrum calculation according to
relation (1).
4. Estimating the mean frequency of Doppler signals
in the time domain by using fractional differentiation
(statistical modeling)

The algorithm of estimation of the mean frequency by
using fractional differentiation of the signal was virtually
tested to random signal.

Fig. 6 presents the results of statistical modeling of the
mean frequency estimate for the model of the test signal
which consists of an additive mixture of quasi-harmonic
component and the Gaussian noise n(t) with dispersion s2n
in the frequency band 0�2f 0

xðtÞ ¼ A0½1þm cos ð2πFmtÞ� cos ð2πf 0tÞþnðtÞ: ð9Þ

The carrier frequency f 0 ¼ 512 Hz and the number of 8192
samples in the interval T¼1 s with sample spacing
Δt ¼ 0:12 μs were used in calculations. The modulation
depth was chosen as m¼0.9 while the frequency as
Fm¼32 Hz. Fig. 6 shows the quasi-frequency2 values calcu-
lated by an averaging counter. The values are obtained by
averaging over 100 random-process realization.

One can see from Fig. 6 that estimation of the mean
frequency is more stable against additive noise if based on
the fractional differentiating filter compared to that based
on the quasi-frequency method.
5. Quantitative estimating the processing speed
of evaluation of the mean frequency by using fractional
differentiation of the signal

Suppose the NEO has a diameter �100 m and rotation
period �10 min, then the spectrum width amounts to
�1 m/s which corresponds to the Doppler signal's width
in the X-band �50 Hz. In such a case the mean Doppler
frequency equals �2 MHz at velocity 30 km/s. The sam-
pling signal's rate then should be chosen as 44 MHz
(ΔT � 0:1 μs).

For a better velocity resolution (�0.01 m/s or higher
[16]) one has to measure the Doppler frequency with an
accuracy of �0.5 Hz or higher [16]. If the Doppler signal
duration is �0.1 s, this requires processing about N� 106

signal counts.
The standard spectral analysis with the use of FFT

will require NZ2� 107 multiplication operations. The 10
MFlops processor will do the task in 2 s whereas the signal



Fig. 6. The relative error of the mean frequency of the AM signal
(f 0 ¼ 512 Hz; Fm¼32 Hz; m¼0.9; NΣ ¼ 100). Squares: the method of
fractional differentiation, crosses: the method of quasi-frequency.
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lag for the filer of order M¼100 is only Tm ¼MΔt ¼
100� 10�7 s¼ 10�5 s. Thus the speed gain is about 5.5
orders of magnitude. The time expenditures will become
comparable if teraflops computers are used for FFT com-
putations which is neither economically advantageous nor
technically easily feasible in onboard systems.

According to the Cramer–Rao bound [17], to achieve
such accuracy one has to maintain an excess of signal over
noise of at least 30 dB. Since the terminal phase of target
approach when homing characterizes the small distance R
which further shortens such an excess maintenance is less
of a problem.

6. Conclusion

Thus, the use of fractional differentiation of the Doppler
signal allows an exact estimate of velocity of the oversized
cosmic objects practically immediately after the arrival of
the reflected signal. The proposed algorithm is substan-
tially simpler and more economical than the classical one
using the spectral analysis of the Doppler signal.

The authors hope that the suggested algorithm makes
the prospect of arranging an asteroid-comet threats pro-
tection system more feasible.
The process of real-time estimate of the mean fre-
quency of the Doppler signals by utilizing the differentia-
tion operation is covered by an RF patent [18].
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